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A B S T R A C T

Increasing competition for space and resources at the agriculture-conservation interface poses 
critical challenges to wildlife conservation, often intensifying human–wildlife conflicts 
throughout the globe, including Kenya. With approximately 70 % of Kenya’s wildlife residing 
outside protected areas, land conversion for agriculture exacerbates human–wildlife conflicts, 
particularly involving African elephants (Loxodonta africana). Taita Taveta County in Kenya 
represents a hotspot for human–elephant conflict, where these incidents undermine both con
servation efforts and livelihoods. This study assesses multiple distribution model algorithms and 
ensemble models, using Kenya Wildlife Service incident data and ten geospatial variables, to 
predict human–elephant conflicts in the county. The study extends the spatial pattern analysis to 
the comprehensive comparison of outputs, such as probability and risk maps, thus filling a critical 
gap by offering an innovative framework for human–elephant conflict modeling. Probability 
maps were reclassified into risk maps, and landscape metrics were derived to evaluate the spatial 
patterns of conflict risk. Results highlight that the ensemble model demonstrated superior con
sistency, predictive accuracy, and provided a more balanced representation of human–elephant 
conflict risk compared to single-algorithm models. The analysis identified proximity to houses 
and crops as key conflict predictors, with high-risk zones concentrated near human settlements 
and low-risk zones confined to protected areas. This study proposes that landscape metrics can 
further enhance the evaluation of risk map performance. By integrating ensemble modelling and 
landscape metrics, this research provides policymakers with actionable tools to balance human 
needs with conservation priorities, fostering sustainable human–elephant coexistence in Taita 
Taveta County and beyond.
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1. Introduction

Increasing competition for space and resources at the agriculture-conservation interface poses a critical challenge to wildlife 
conservation, often intensifying cases of human–wildlife conflict (Mukeka et al., 2019). Land conversion for agriculture in ecosystems 
adjacent to national parks and other protected areas exacerbates these conflicts, heightening interactions between rural communities 
and wildlife (Mwangi et al., 2016; Mekonnen, 2020; Dejene et al., 2021, Meyer and Börner, 2022). Such conflicts undermine the 
attainment of conservation objectives (Newbold et al., 2015). In Kenya, approximately 70 % of the country’s wildlife resides outside 
national parks, reserves, and conservancies, inhabiting human-dominated landscapes (Mwaura, 2016; Ogutu et al., 2016). Conse
quently, wildlife conservation efforts and conflict mitigation strategies that focus solely on existing protected areas have proven 
inadequate. The African elephant (Loxodonta africana) accounts for most of these conflicts in Kenya (Mukeka et al., 2018; Long et al., 
2020). For instance, in the Greater Tsavo Ecosystem, African elephants were implicated in 61.6 % (24,032 incidents) of the total 39, 
022 human–wildlife conflict cases reported over a 23-year period (1995–2017) (Mukeka et al., 2020). In Taita Taveta County, three 
forms of human–elephant conflict (HEC) constituted 97 % of all reported incidents over 15 years (2004–2018): threats to human safety 
represented the largest share (62.46 %), followed by crop raiding (32.46 %) and property damage (2.33 %) (Munyao et al., 2020). 
These conflict incidents—including crop raiding, property destruction, and human casualties—have significant impacts on both 
human livelihoods and elephant populations (Von Hagen et al., 2023). Human–elephant conflict has therefore emerged as a pressing 
concern for the communities of Taita Taveta County and, more broadly, for the Kenyan government due to its profound social and 
conservation implications. Mitigating these conflicts requires an understanding of the spatial distribution of elephants (Mlambo et al., 
2024) and characteristics of conflict risk zones, which can facilitate targeted management interventions and inform policies that 
balance conservation priorities with human needs. Accordingly, the development of effective and efficient human–wildlife conflict 
mitigation strategies within the agriculture–conservation interface necessitates spatiotemporal conflict data and species distribution 
models (Fortin et al., 2020; Fidino et al., 2022).

Species distribution modelling has become a prominent approach in human–wildlife conflict research, offering a powerful tool to 
analyse the extent and patterns of human–environment interactions. It enables researchers to identify factors driving conflict risk, 
develop models to predict the likelihood of conflict occurrence (Mateo-Tomás et al., 2012; Kitratporn and Takeuchi, 2020), and guide 
management decisions and mitigation policies (Sofaer et al., 2019). In most of these studies, the prevailing approach has been the use 
of a single algorithm, such as Maximum Entropy (e.g., Sharma et al., 2020; Nayeri et al., 2022; Jayakody et al., 2024), Generalized 
Linear Models (Rani et al., 2024), Generalized Additive Models (Malviya and Krishnamurthy, 2022), or Random Forest (Xu and Tang, 
2024). More recently, however, there has been a growing adoption of ensemble models in human–wildlife conflict studies. This shift 
reflects the ability of ensemble models to integrate predictions from multiple algorithms, leveraging their strengths while compen
sating for individual weaknesses (Kitratporn and Takeuchi, 2020; Xu, Jiang and Liu, 2024). Although ensemble modelling is not a 
novel concept, its extensive application in species distribution modelling research has highlighted its advantages (Araújo and New, 
2007; Sakti et al., 2024). Comparative analyses consistently indicate that ensemble models outperform single algorithms in terms of 

Fig. 1. The study area, Taita Taveta County with human–elephant conflict incidence points and protected areas.
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predictive accuracy (e.g., Marmion et al., 2009). Research on human–wildlife conflicts using ensemble modelling has traditionally 
emphasised the comparative predictive accuracy of species distribution modelling algorithms and ensemble approaches. However, this 
study advances current research by filling a critical gap: the systematic comparison of probability maps and risk maps derived from 

Fig. 2. Eleven predictor variables influencing human–elephant conflict distribution. Elevation omitted from models following multicollinearity 
detection via the Variance Inflation Factor.
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different methodological approaches. Moreover, we incorporate landscape metrics to assess the extent of variations in risk maps 
introduced by different species distribution model algorithms and ensemble models. This novel approach broadens the scope of spatial 
pattern analysis, offering deeper insights into the accuracy and reliability of human–elephant conflict modelling outputs. Although the 
local communities in Taita Taveta County report conflict incidents, this point based information may not wholesomely guide conflict 
mitigation strategies but with the generated risk maps, sites where mitigation efforts should be focused on are simply highlighted.

1.1. Purpose of the study

The purpose of the study is to assess multiple model algorithms and an ensemble model, using Kenya Wildlife Service’s human
–wildlife conflict incident data and ten geospatial variables, to predict human–elephant conflicts in Taita Taveta County, Kenya. As a 
result, this study contributes to the identified research gap in the conservation ecology literature by extending the spatial pattern 
analysis to the comprehensive comparison of outputs, such as probability and risk maps, thus offering an innovative framework for 
human–elephant conflict modelling while underscoring the value of ensemble methodologies in addressing multifaceted conservation 
issues.

2. Materials and methods

2.1. Study area

The study area, Taita Taveta County is in southeastern Kenya between latitude 2̊46 and 4̊10 south and longitude 37̊36 and 30̊14 
east (Fig. 1) and located in the semi-arid Tsavo-Mkomazi Ecosystem, where the mean annual rainfall varies between 250 mm and 
500 mm. The agroecological zones with more intensive agriculture at higher elevations in the Taita Hills receive over 1200 mm (Taita 
Taveta County Government, 2013). In 2019, the county had 340,670 inhabitants (Kenya National Bureau of Statistics, 2019). Agri
culture is an important land use in the county, although only 2.5 % of the land has high potential. The county’s land area is 
approximately 17,000 km², with 62 % covered by the Tsavo East and Tsavo West National Parks, the two largest protected areas in 
Kenya. In addition, there are private ranches and community conservancies. The county is known for its rich wildlife and home to 
Kenya’s largest elephant population. An aerial wildlife census in the Tsavo-Mkomazi Ecosystem, with a land area of over 49,611 km², 
counted 11,158 elephants in 2014 and 12,866 in 2017, indicating a 14.7 % population increase over the three-year period (Ngene 
et al., 2017).

2.2. Human–elephant conflict incidence data and predictor variables

This study utilized human–wildlife conflict incident data collected in Taita Taveta County between January 2014 and September 
2015. The data were derived from 3027 compensation request forms submitted to the Kenya Wildlife Service. From these records, 94 
human–elephant conflict incidents with verified geographic coordinates were identified, including 70 crop raiding events and 24 

Table 1 
Predictor variables with description and data sources. Elevation variable omitted from the HEC models following multicollinearity detection via the 
Variance Inflation Factor.

Variable Description Original spatial 
resolution

Min Max Mean StdDev Source

dist_crops Distance to crops 20 m 0 15447 2977.4 3978.4 Taita Taveta County land cover 
map (Abera et al. 2022)

dist_house Distance to houses 100 m 0 41400 14148 14554.7 digitized from Google satellite 
imagery

dist_PA Distance to protected 
areas

100 m 0 27165 3554.3 6559.9 Kenya Wildlife Service

dist_rivers Distance to rivers 100 m 0 34890 8068.8 7545.7 topographic maps at a 1:50 000 
scale by the Survey of Kenya

dist_road Distance to roads 100 m 0 8680 2001.2 1809.6 topographic maps at a 1:50 000 
scale by the Survey of Kenya

dist_waterholes Distance to waterholes 100 m 0 23018 4648.6 4197 digitized from Google satellite 
imagery

elevation Elevation m.a.s.l. from 
the DEM

30 m 163 2196 687.4 244.4 NASADEM_HGT 30 m (NASA 
AρρEEARS)

evi_mean Enhanced Vegetation 
Index (EVI) 2014–2015

500 m 0.03 0.52 0.21 0.05 MODIS, MOD13A1 (NASA 
AρρEEARS)

rainfall_mean Mean annual 
precipitation 2014–2015 
(mm)

0.05 deg. 356.8 1546.3 652.4 194.7 CHIRPS 3.0 (Funk et al., 2015)

slope Slope (degrees) derived 
from the DEM

30 m 0 70 2.2 3.9 NASADEM_HGT 30 m (NASA 
AρρEEARS)

temperature_mean Annual mean 
temperature (◦C)

30 sec. 18.3 28.7 26 1.4 AFRICLIM 3.0 (Platts et al., 2015)
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human–related incidents. The human-related incidents were categorized into human death (n = 6), human injury (n = 6), human 
threat (n = 11), and property damage (n = 1). These data points were compiled into a unified human–elephant conflict incidence point 
dataset (Fig. 1). Before integrating the dataset into the modelling framework, a two-step validation process was undertaken. First, a 
detailed review of the compensation request forms was conducted to ensure data consistency. Second, a field survey was carried out to 
verify the spatial accuracy of incident locations containing coordinate information. This validation ensured the reliability of the 
dataset for subsequent analyses.

This study examined predictor variables that influence human–elephant conflicts, selecting factors with strong support in the 
literature (e.g., Hoare, 1999; de Knegt et al., 2011; Rohini, et al., 2016; Williams et al., 2018; Sharma et al., 2020; Baskaran et al., 2024) 
(Fig. 2). For climate data, annual mean temperature was obtained from AFRICLIM 3.0 (Platts et al., 2015), while annual mean pre
cipitation data for 2014–2015 was sourced from CHIRPS v3.0 (Funk et al., 2015) and spline-interpolated to a spatial resolution of 
100 × 100 m. Vegetation data, specifically the MODIS Enhanced Vegetation Index (EVI) MOD13A1 product, were downloaded from 
NASA’s AρρEEARS platform and averaged over the study period 2014–2015 (Huete et al., 2002). Elevation data were acquired from 
NASADEM_HGT (30 m resolution) through AρρEEARS, and slope (in degrees) was calculated from these elevation values. Using the 
Euclidean Distance tool in ArcGIS, we calculated distances to rivers, waterholes, roads, and protected areas based on geospatial data 
from 1:50,000 scale topographic maps by the Survey of Kenya and Google satellite imagery. Since spatial data on human dwellings 
were unavailable for Taita Taveta County, we manually digitised all household locations from Google satellite imagery and calculated 
Euclidean distances to houses in ArcGIS. Cropland data were obtained from the Taita Taveta County land cover map layer (Abera et al., 
2022), with distances to crops similarly calculated. Each predictor layer was clipped to the county boundary and reprojected to the 
WGS 1984 UTM Zone 37S coordinate system. The layers were standardized to a 100 × 100 m resolution, a scale deemed suitable for 
regional human–elephant conflict studies based on prior research (Li et al., 2023). We assessed multicollinearity among the eleven 
predictor variables using the Variance Inflation Factor method (Besley et al., 1980), with a threshold of 5 applied via the vif.step 
function in usdm (Naimi et al., 2014). Elevation was excluded due to collinearity, leaving ten predictor variables for model analysis, as 
detailed in Table 1.

2.3. Data analysis and predictive human–elephant conflict modelling

Human–elephant conflict modelling was conducted using the species distribution modelling framework sdm (Naimi and Araújo, 
2016) within the R software environment (version 4.3.3) (R R Core Team, 2024). Species distribution models are statistical models that 
uses species occurrence data, together with environmental data, to produce a correlative model of the environmental conditions that 
meet a species’ ecological needs, and which can determine the potential habitat of a given species (Guisan and Zimmermann, 2000; 
Elith, et al., 2008; Guisan et al., 2017). Species distribution modelling has been also used recently successively in human–wildlife 
conflict and human–elephant conflict studies see e.g. (Sharma et al., 2020; Jayakody et al., 2024; Xu, Jiang and Liu, 2024). In this 
study, we implemented six well-established species distribution modelling algorithms using 5-fold cross-validation. The selected al
gorithms were Generalized Linear Models (GLM), Generalized Additive Models (GAM), Boosted Regression Trees (BRT), Maximum 
Entropy (Maxent), Random Forest (RF), and Support Vector Machines (SVM). These algorithms, except for Maxent, require both 
presence and absence data. Therefore, background data (pseudo-absences) were randomly generated across the study area using the 
gRandom function in the sdm R package. In accordance with the recommendations of Barbet-Massin et al. (2012), we employed 1000 
background points when the number of valid occurrence records was 100 or less. However, earlier studies have demonstrated sig
nificant variability in predictions across different modelling algorithms, complicating model selection (Pearson et al., 2006; Thuiller 
et al., 2009). To address this uncertainty, we adopted an ensemble modelling approach (see e.g., Araújo and New, 2007; Hao et al., 
2019; Marmion et al., 2009). Ensemble models were built by averaging weighted outputs using the TSS method (opt=2) within the sdm 
package (Naimi and Araújo, 2016), optimising the threshold to maximise true skill statistics (TSS). Our species distribution modelling 
methodology employed five-fold cross-validation, with 70 % of the data used for training in each fold and 30 % for validation (Guisan 
and Zimmermann, 2000). For our primary model performance evaluation method, we used the True Skill Statistic (TSS). The true skill 
statistics has proven to be a good metric for describing model performance given imbalanced binary class datasets because it places 
equal weight on the model’s ability to predict both classes (Allouche et al., 2006). The true skill statistics values range from − 1 to + 1, 
with values approaching + 1 indicating better predictive ability. In contemporary species distribution modelling studies, true skill 
statistics is often preferred alongside other metrics to provide a more comprehensive assessment of model performance. We therefore 
also include the area under the receiver operating characteristic curve (AUC ROC) (Fielding and Bell, 1997) as a performance metric, 
even though AUC has been criticised for potentially misleading predictive accuracy (Lobo et al., 2008). This decision was justified 
because AUC has been commonly applied in the species distribution modelling literature for model evaluation. Area under the receiver 
operating characteristic curve values range from 0 to 1, with higher values indicating better performance (Fielding and Bell, 1997). In 
general, AUC values of 0.5–0.7 are considered low and represent poor model performance, values of 0.7–0.9 are considered moderate, 
and values above 0.9 represent excellent model performance (Swets, 1988). In the results, we report the mean true skill statistics and 
AUC across the model replicates and show the AUC curves for each modelling algorithm. Additionally, we visualize the predictors’ 
partial response curves calculated as a mean response from the six modelling algorithms. We further utilised the getVarImp function 
from the sdm package to assess the relative importance of variables in our models. This function calculates scores that highlight the 
predictors contributing most significantly to the model’s predictive accuracy. Further, we developed a ranking method to determine 
predictors importance for all the human–elephant conflict models. In addition, we investigated the relationship between the conflict 
prediction raster maps (GLM, GAM, BRT, Maxent, RF, SVM, and Ensemble) by calculating Pearson’s Correlation Coefficient (r) using 
the layerStats function in the R raster package.
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2.4. Human–elephant conflict risk maps and risk class level landscape index analysis

We developed human–elephant conflict risk maps using both individual algorithmic predictions and ensemble prediction generated 
by species distribution models. Probability values were categorized into five levels of conflict risk: ‘low risk’ (0–0.2), ‘below average 
risk’ (0.21–0.4), ‘average risk’ (0.41–0.6), ‘high risk’ (0.61–0.8), and ‘very high risk’ (0.81–1). This classification methodology has 
been utilized in prior studies (Ansari and Ghoddousi, 2018; Zhang et al., 2019, Obunga et al., 2022). To assess spatial structure across 
classified risk maps, we conducted a quantitative analysis of landscape indices using FRAGSTATS v4.3 (McGarigal et al., 2023), a 
dedicated software for computing landscape metrics. We calculated nine class-level metrics for risk maps produced by six species 
distribution modelling algorithms and the ensemble approach. The selected indices included Class Area (CA), Percentage of Landscape 
(PLAND), Number of Patches (NP), Landscape Shape Index (LSI), Mean Patch Area (AREA_MN), Euclidean Nearest Neighbour 
(ENN_MN), Percentage of Like Adjacencies (PLADJ), Interspersion and Juxtaposition Index (IJI), and Aggregation Index (AI). These 
metrics were chosen for their capacity to quantify spatial heterogeneity, patch configuration, and connectivity, all of which are critical 
factors in understanding human–elephant conflict risk. Additional details on metric definitions and their computational procedures are 
provided in Supplementary Materials 1. This methodological framework facilitated a systematic evaluation of the spatial patterns 
predicted by different modelling approaches, enabling a robust assessment of conflict risk classification.

2.5. Human–elephant conflict risk combination analyses to evaluate risk map performances

To rigorously evaluate and compare the performance of each human–elephant conflict risk map, which was derived through 
various modelling algorithms including GLM, GAM, BRT, Maxent, RF, SVM, and an Ensemble approach, we developed a novel 
analytical approach to analyse all possible risk raster combinations. For each of the seven risk maps, classified into four possible 
categories, the initial analysis considered 16,384 potential combinations. We then generated a combination matrix and computed 
Pearson’s correlation coefficients (r) for each algorithmic pairing. This methodology provided a robust metric for assessing the dif
ferences and similarities of the risk models calculated in this study.

3. Results

3.1. Model performances

Predictive accuracies of all species distribution modelling algorithms were generally good in terms of both true skill statistics (TSS) 
and area under the receiver operating characteristic curve (AUC). The model performance, with five-fold cross-validation of six model 
algorithms, with mean TSS and AUC values, is presented in Table 2 and Fig. 3. The AUC ROC curves for each modelling algorithm 
during training and testing are illustrated in Fig. 4. Altogether, the models provided reliable estimates for human–elephant conflict 
distributions. The mean true skill statistics varied between 0.74 SVM and 0.86 RF, while the mean AUC ranged from 0.91 to 0.96 
respectively. GAM, Maxent, and RF achieved the highest performance out of all six algorithms based on mean TSS values, whereas, 
based on AUC values, RF performed the best. The standard deviation of the models was fairly constant, indicating that the models are 
robust and reliable in their predictions (Fig. 3). Supplementary Materials 2 (Fig. S1 to S6), shows the AUC ROC curves for each model 
run for each modelling algorithm and Mean ROC curves for model training and testing.

3.2. Predictors contribution to human–elephant conflicts

Table 3 shows the mean relative contribution of predictors (%) based on the AUC metric of each predictor within the models. The 
distance to house (dist_house) variable was the major contributor for all the models, followed by the distance to crops (dist_crops), 
distance to protected areas (dist_PA), distance to waterholes (dist_waterholes) and distance to river (dist_rivers). All the other variables 
contributed less. Predictor contribution in each model differed slightly across modelling algorithms, and the SVM model exhibited the 
greatest differences compared to the other models.

Table 2 
Modelling algorithm performance with mean true skill statistics (TSS) and area under the receiver operating 
characteristic curve (AUC) values and deviance. Total number of replicates per model is 25.

Algorithm TSS AUC Deviance

GLM 0.84 0.95 0.30
GAM 0.84 0.95 0.36
BRT 0.84 0.96 0.32
MAXENT 0.86 0.95 0.30
RF 0.86 0.96 0.25
SVM 0.74 0.91 0.35
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3.3. Predictors importance ranking for human–elephant conflict models

The distance to house (dist_house) was the most important predictor variable, followed by distance to crops (dist_crops), highlighting 
their consistent role in predicting human–elephant conflicts (Table 4). Distance to protected areas (dist_PA) ranked third among the 
predictors with conflict probability peaking at a distance of 3–7 km from protected area boundaries. Distance to waterholes (dis
t_waterholes) ranked fourth and distance to river (dist_river) ranked fifth. The response to the Enhanced Vegetation Index (evi_mean) was 
positive, with conflict risk increasing alongside higher vegetation index values (Fig. 5). Slope variable (Slope) was a relatively poor 
predictor, because in the study area elephants are mostly located in relatively flat terrain (no slope). Both climate predictors—annual 
mean temperature (temperature_mean) and precipitation (rainfall_mean)—performed poorly in our study and the distance to road 
variable (dist_road) was the least significant variable in this study. Table 4. shows predictor importance ranking performances for all 
seven human–elephant conflict modelling methods. In this ranking, the most influential variable receives a score of 10 for an inde
pendent model, while the least influential is assigned a score of 1. Consequently, the maximum possible score sum for the most 
important predictor is 70, whereas the lowest possible score sum is 7.

Fig. 3. Mean True Skill Statistics (TSS) (A) and area under the receiver operating characteristic curve (AUC) (B) values and standard deviation for 
each modelling algorithm of human–elephant conflict models. GLM = Generalized Linear Model, GAM = Generalized Additive Model, BRT 
= Boosted Regression Tree, Maxent = Maximum Entropy, RF = Random Forest, SVM = Support Vector Machine. Total number of replicates per 
model is 25.
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Fig. 4. Modelled mean response curves obtained from the six modelling algorithms. (A) annual precipitation in 2014–2015 (mm), (B) annual mean 
temperature (◦C), (C) Slope (degrees), (D) Mean Enhanced Vegetation Index (2014–2015), (E) distance to crops, (F) distance to houses, (G) distance 
to protected areas, (H) distance to rivers, (I) distance to roads, (J) distance to waterholes. The X-axis presents the predictor variable, while the Y-axis 
depicts the probability of occurrence of human–elephant conflict.

Table 3 
Mean relative contribution of predictors (%) for all human–elephant conflict models (total number of replicates per model is 25).

Mean relative contribution of predictors (%) based on AUC metric

Variable GLM (AUC) GAM (AUC) BRT (AUC) Maxent (AUC) RF(AUC) SVM (AUC) ENSEMBLE (AUC)

dist_crops 32.1 23 2.3 19.5 1.1 21.9 3.8
dist_house 60.6 60.3 40.2 56.9 13 30.7 24.2
dist_PA 1.8 5 1.9 4.5 1 6.6 3
dist_rivers 1.4 1.1 1.5 1 0.7 2.5 1.6
dist_road 0.1 1.1 0.2 0.6 0.2 3.1 0.7
dist_waterholes 1.7 2.6 0.7 2.3 0.5 5.3 1.4
evi_mean 0.1 0.4 0.4 0.5 0.4 9.2 0.5
rainfall_mean 0.2 2.6 0.3 0.6 0.2 2.9 0.7
slope 1.7 1 0.4 2.2 0.2 2.6 1.1
temperature_mean 0.2 2.7 0.9 0.8 0.3 3.6 1
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3.4. Predictor variables response curves

Predictors partial response curves were used as additional components in interpreting the performance of the human–elephant 
conflict models (Fig. 4). The mean response curves from the six modelling algorithms suggests that conflict incidents are more likely to 

Table 4 
Predictor importance ranking for all human–elephant conflict models based on Table 3 (per model highest score given is 10 and lowest is 1).

Variable GLM 
(AUC)

GAM 
(AUC)

BRT 
(AUC)

Maxent 
(AUC)

RF 
(AUC)

SVM 
(AUC)

ENSEMBLE 
(AUC)

Predictor 
importance sum

Predictor 
importance

dist_house 10 10 10 10 10 10 10 70 1
dist_crops 9 9 9 9 9 9 9 63 2
dist_PA 8 8 8 8 8 7 8 55 3
dist_waterholes 7 6 5 7 6 6 6 43 4
dist_rivers 5 4 7 5 7 1 7 36 5
temperature_mean 3 7 6 4 4 5 4 33 6
slope 6 2 3 6 1 2 5 25 7
evi_mean 2 1 4 1 5 8 1 22 8
rainfall_mean 4 5 2 2 2 3 2 20 9
dist_road 1 3 1 3 3 4 3 18 10

Fig. 5. Prediction of human–elephant conflict (HEC) probability. The maps show the probability values for each modelling algorithm of conflict 
models. GLM = Generalized Linear Model, GAM = Generalized Additive Model, BRT = Boosted Regression Tree, Maxent = Maximum Entropy, RF 
= Random Forest, SVM = Support Vector Machine, and Ensemble is a mean model of all algorithms (150 model runs). Upper left map depicts the 
main towns and roads of Taita Taveta County.
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occur in areas characterised by lower annual precipitation, higher annual temperatures, and flat terrain (no slope) in Taita Taveta 
County (Fig. 4A, B, and C). The relationship between human–elephant conflict occurrence and the average Enhanced Vegetation Index 
is curvilinear (Fig. 4D), with peak conflict occurrences at an average index value of approximately 0.35. This could be explained by the 
fact that conflict incidents are more likely to occur in areas with more dense vegetation, such as croplands or savanna woodlands. The 
curvilinear decay in the curve suggests that areas with above average Enhanced Vegetation Index values may have a higher probability 
of conflict, rather than the highest index values which in study area may refer to indigenous forests in the Taita Hills. For distance- 
based predictors (Fig. 4E to J), clear patterns emerge, showing a higher likelihood of human–elephant conflicts in areas near 
human settlements, croplands, roads, and waterholes.

3.5. Human–elephant conflict prediction maps

The human–elephant conflict prediction maps for six algorithms and the ensemble model are presented in Fig. 5. These maps 
highlight notable patterns: high conflict probabilities are concentrated near villages, while low probabilities occur primarily within 
protected areas, which is expected. Visual analysis reveals significant differences among the models. For example, the Maxent model 
exhibits unique patterns with high conflict probabilities, potentially suggesting overfitting. In contrast, the BRT model underpredicts 
high-probability areas, while the SVM model displays large areas of very high probability that are less pronounced in other maps. The 
Ensemble model, however, provides a visually balanced representation of high and low human–elephant conflict values. To further 
investigate the relationships between the models, Pearson’s correlation coefficients (r) were computed (Table 5). The correlation 
analysis aligns with the visual observations, showing the lowest correlation (r = 0.62) between the SVM and BRT models. This 
discrepancy arises from the BRT model predicting fewer high-probability areas, whereas the SVM model identifies extensive regions of 
elevated conflict risk. To investigate all the other correlative relationships between the predicted models, refer to Table 5.

In our study, the Ensemble model demonstrates consistency and balance, offering a harmonised prediction of human–elephant 
conflict probabilities.

3.6. Human–elephant conflict risk maps and risk class level landscape index analysis

The risk maps presented in Fig. 6 show four risk classes, whereas in Fig. 7 these only depict areas with high and very high 
human–elephant conflict. These figures indicate that the highest risk of conflict was predicted in areas close to villages. The risk maps 
for different modelling algorithms also show clear variations in the risk areas.

Human–elephant conflict risk maps were constructed using seven modelling approaches. The first percentage of land area for 
conflict based on risk classes for six modelling algorithms and the Ensemble model was computed (Table 6). The majority of the area is 
classified into the low-risk class across all models, with percentages ranging from 87.88 % Maxent to 95.53 % BRT model. Notably, 
BRT model exhibits the highest coverage, indicating its tendency to favour a conservative classification of low risk. SVM also assign 
substantial portions of the area to this class, with 95.35 %. The Ensemble model aligns closely with the general trend, at 91.29 %. The 
below-average risk class represents a smaller percentage, with the models showing 2.90 % SVM model to 6.19 % GLM coverage. GLM 
model and the Ensemble model produce similar coverage levels, suggesting a moderate inclination towards assigning below average 
risk zones compared to the other algorithms. SVM model has the lowest coverage here, likely reflecting its stronger focus on low risk 
assignments. The average risk class exhibits variability, with 0.67 % BRT model as the lowest and 3.91 % Maxent as the highest. 
Maxent’s higher value indicates a broader identification of moderate risk zones, diverging significantly from other algorithms like BRT, 
which classifies minimal areas into this category. The Ensemble model predicts 2.19 %, striking a balance among the algorithms. The 
high risk class zones account for 0.08 % BRT model to 3.05 % Maxent, with most algorithms predicting less than 1 % of the area in this 
category. Maxent notably classifies the highest percentage, demonstrating a stronger emphasis on detecting potentially critical areas of 
conflict. Conversely, models such as BRT, RF and SVM are highly conservative in their high-risk designations and the Ensemble, 
classify 0.5 % of the area in this class. The very high risk class category is consistently small across all algorithms, with predictions 
ranging from 0.00 % BRT model to 0.70 % Maxent. The Maxent model again stands out, predicting the highest proportion of critical 
risk, while most other models, including. Notably, the Ensemble model predicts only 0.02 %, indicating its conservative aggregation of 
very high-risk zones.

This study used FRAGSTATS v4.3 to analyse spatial patterns in landscapes classified into five risk classes: low risk, below average 
risk, average risk, high risk, and very high risk. For each risk class, landscape maps generated by seven modelling algorithms were 
assessed using nine key metrics, providing a detailed quantitative understanding of the spatial configurations of human–elephant 

Table 5 
Pearson’s correlation coefficients (r) computed between the human–elephant conflict models.

HEC model ENSEMBLE BRT GAM GLM MAXENT RF SVM

ENSEMBLE 1 0.92 0.96 0.95 0.97 0.95 0.78
BRT 0.92 1 0.86 0.85 0.88 0.96 0.62
GAM 0.96 0.86 1 0.90 0.93 0.88 0.73
GLM 0.95 0.85 0.90 1 0.91 0.86 0.71
MAXENT 0.97 0.88 0.93 0.91 1 0.91 0.69
RF 0.95 0.96 0.88 0.86 0.91 1 0.69
SVM 0.78 0.62 0.73 0.71 0.69 0.69 1
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conflict risk classes (Table 7). The landscape metrics revealed that across all models, low-risk zones overwhelmingly dominated the 
landscape in both areal extent and aggregation. For instance, BRT and SVM models predicted the highest PLAND values for low-risk 
classes (95.6 % and 95.3 %, respectively), with very high Aggregation Index values (AI > 99), indicating a high degree of spatial 
continuity. SVM additionally exhibited the largest mean patch size (AREA_MN = 6942.9 ha) for low-risk zones, suggesting compact 
and consolidated low-conflict areas. In contrast, models such as RF and BRT produced highly fragmented below-average risk zones, 
with RF yielding 2405 patches and a Landscape Shape Index (LSI) of 85.3, reflecting a complex and disaggregated structure. High-risk 
and very high-risk zones were sparse and markedly fragmented across all models. These classes showed low PLAND values (generally 
<3 %), with elevated LSI and ENN_MN scores, indicating isolated and irregularly shaped patches. Notably, Maxent generated the most 
extensive high-risk zone (PLAND = 3.0 %) with the highest NP (2223), suggesting widespread but disconnected high-risk locations. 
The ensemble model produced moderate levels of fragmentation across most classes, offering a balance between spatial cohesion and 
complexity. Very high-risk zones remained negligible across all models, both in terms of area and spatial integration, with AI values 
generally below 70 and PLADJ values often near 50 %.

3.7. Human–elephant conflict risk combination analyses to evaluate risk map performances

To evaluate and compare the performance of human–elephant conflict risk maps generated by six modelling algorithms and 
ensemble approach, we computed seven risk maps. Each map was initially classified into four risk classes, yielding a total of 47 
(16,384) possible risk combinations. However, due to the absence of a high-risk class in the BRT model, which was limited to three 

Fig. 6. Human–elephant conflict (HEC) risk maps. The maps show the conflict risk classes for each modelling algorithm of HEC models. GLM 
= Generalized Linear Model, GAM = Generalized Additive Model, BRT = Boosted Regression Tree, Maxent = Maximum Entropy, RF = Random 
Forest, SVM = Support Vector Machine and Ensemble is a mean model of all algorithms (150 model runs). Upper left map depicts the main towns 
and roads of the Taita Taveta County The risk maps were derived from probability values by reclassify into four HEC risk classes: ‘low risk’ (0–0.2), 
‘below average risk’ (0.21–0.4), ‘average risk’ (0.41–0.6), ‘high risk’ (0.61–1) and ‘very high risk’ (0.81–1).

T. Johansson et al.                                                                                                                                                                                                     Global Ecology and Conservation 60 (2025) e03604 

11 



classes, the number of potential combinations was reduced to 46 × 3 (12,288). In this study, 1539 unique risk map combinations were 
identified. Pearson’s correlation coefficients were calculated across this combination matrix to assess associations between different 
conflict models. The analysis revealed a range of correlation values, indicating varying degrees of similarity in the spatial risk patterns 
produced by each model (Fig. 8). The strongest correlation is between the Ensemble and GAM models (0.63), followed closely by the 
correlations of Ensemble with Maxent (0.62) and RF (0.52). These high values indicate that these models generate comparable risk 
maps, potentially due to shared or complementary data patterns. In contrast, the SVM model shows very low correlations with several 
models, particularly with GLM (0.06), and RF (0.07) and, exhibited negative correlation with BRT (-0.16), These low correlations 
suggest that SVM identifies different aspects of the human–elephant conflict risk landscape compared to other methods, resulting in 

Fig. 7. High- and very high human–elephant conflict (HEC) risk areas. The maps show the conflict risk areas for each modelling algorithm of 
human–elephant conflict models. GLM = Generalized Linear Model, GAM = Generalized Additive Model, BRT = Boosted Regression Tree, Maxent 
= Maximum Entropy, RF = Random Forest, SVM = Support Vector Machine and Ensemble is a mean model of all algorithms (150 model runs). 
Upper left map depicts the main towns and roads of Taita Taveta County The risk maps were derived from probability values by reclassifying into 
binary risk classes: ‘high and very high’ (0.61–1).

Table 6 
Percentage of land area for human–elephant conflict based on risk classes for six modelling algorithms and the Ensemble model.

Risk class GLM GAM BRT Maxent RF SVM ENSEMBLE

low 90.33 92.10 95.63 87.88 92.10 95.35 91.29
below average 6.19 4.05 3.62 4.46 5.39 2.90 6.01
average 2.80 2.52 0.67 3.91 1.94 0.93 2.19
high 0.66 1.07 0.08 3.05 0.51 0.47 0.50
very high 0.02 0.26 0.00 0.70 0.06 0.36 0.02
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Table 7 
FRAGSTATS-based risk class level landscape index analysis for nine metrics classified into four risk classes.

Model type and risk class CA PLAND NP LSI AREA_MN ENN_MN PLADJ IJI AI

low-risk GLM 1532480 90.3 573 10.3 2674.5 309.8 99.2 1.9 99.3
low-risk GAM 1562585 92.1 322 7.4 4852.7 316.0 99.4 4.1 99.5
low-risk BRT 1622496 95.6 601 13.0 2699.7 253.9 99.0 2.8 99.1
low-risk MAXENT 1490914 87.9 356 10.1 4188.0 341.2 99.2 8.8 99.3
low-risk RF 1562792 92.1 1023 14.1 1527.7 272.6 98.9 3.3 98.9
low-risk SVM 1617685 95.3 233 5.7 6942.9 300.1 99.5 13.8 99.6
low-risk ENSEMBLE 1548775 91.3 531 9.5 2916.7 334.8 99.2 0.7 99.3
below average-risk GLM 105030 6.2 1527 54.0 68.8 322.1 83.3 48.1 83.6
below average-risk GAM 68784 4.1 1030 50.9 66.8 313.0 80.6 51.0 80.9
below average-risk BRT 61406 3.6 1886 76.5 32.6 332.7 69.1 49.3 69.4
below average-risk MAXENT 75736 4.5 2712 73.7 27.9 288.6 73.2 56.5 73.5
below average-risk RF 91495 5.4 2405 85.3 38.0 319.7 71.8 51.4 72.0
below average-risk SVM 49183 2.9 851 33.2 57.8 397.2 85.0 48.1 85.4
below average-risk ENSEMBLE 101908 6.0 1409 55.5 72.3 305.7 82.6 49.8 82.8
average-risk GLM 47527 2.8 961 41.3 49.5 366.2 81.0 43.3 81.4
average-risk GAM 42783 2.5 847 44.2 50.5 388.4 78.6 49.2 79.0
average-risk BRT 11385 0.7 1057 46.7 10.8 334.3 56.1 41.8 56.7
average-risk MAXENT 66338 3.9 2431 78.5 27.3 273.7 69.5 60.2 69.8
average-risk RF 32946 1.9 2201 70.6 15.0 314.7 61.0 42.9 61.3
average-risk SVM 15718 0.9 367 23.1 42.8 337.5 81.6 61.8 82.2
average-risk ENSEMBLE 37071 2.2 1307 48.8 28.4 352.2 74.6 34.8 75.0
high-risk GLM 11209 0.7 499 23.5 22.5 516.6 77.8 16.4 78.5
high-risk GAM 18094 1.1 577 29.4 31.4 449.9 78.1 41.7 78.7
high-risk BRT 1300 0.1 170 18.2 7.6 299.1 48.8 10.8 50.3
high-risk MAXENT 51673 3.0 2223 64.7 23.2 293.1 71.5 52.2 71.8
high-risk RF 8580 0.5 815 38.6 10.5 312.3 58.2 43.7 58.8
high-risk SVM 7974 0.5 162 14.8 49.2 444.7 83.3 71.1 84.3
high-risk ENSEMBLE 8528 0.5 300 20.2 28.4 480.0 78.1 23.4 79.0
very high-risk GLM 341 0.0 36 7.1 9.5 722.8 61.7 0.0 65.3
very high-risk GAM 4341 0.3 177 12.7 24.5 302.6 80.6 2.0 81.9
very high-risk MAXENT 11926 0.7 1893 42.5 6.3 341.0 61.0 22.3 61.6
very high-risk RF 981 0.1 119 14.2 8.2 283.4 54.4 9.2 56.2
very high-risk SVM 6027 0.4 49 7.5 123.0 324.3 90.3 47.3 91.5
very high-risk ENSEMBLE 305 0.0 42 8.7 7.3 311.7 49.8 0.0 52.9

(Note: CA=Class Area, PLAND=Percentage of Landscape, NP=Number of Patches, LSI=Landscape Shape Index, AREA_MN=Mean Patch Area, 
ENN_MN=Mean Euclidean Nearest Neighbor Distance, PLADJ=Percentage of Like Adjacencies, IJI=Interspersion and Juxtaposition Index, 
AI=Aggregation Index).

Fig. 8. Pearson’s correlation analysis for human–elephant conflict (HEC) risk combinations to evaluate risk map performances.
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largely independent outputs. The BRT and RF models show moderate correlation (0.47), which aligns with their methodological 
similarities as tree-based algorithms. The GLM shows only modest correlations, with values of 0.47 for Ensemble and 0.35 for GAM, 
indicating unique conflict risk features not fully captured by other models. These findings show that while some models, such as 
Ensemble and GAM, share high similarities, others like SVM offer distinct risk profiles, adding depth to human–elephant conflict risk 
analysis. Fig. 8 correlation matrix highlights that the Ensemble model displays consistently high correlations with the risk maps 
generated by single modelling algorithms.

4. Discussion

4.1. Implications for conservation—risk maps and risk class level landscape index analysis comparison

While many species distribution modelling studies focus on habitat suitability mapping and the comparison of different algorithms 
(e.g., Buebos-Esteve et al., 2024), there remains a notable gap in research investigating variations in human–wildlife conflict and 
human–elephant conflict risk maps. Our results demonstrate significant differences in risk maps generated by various algorithms, 
highlighting the critical importance of thorough understanding of their performance for conservation efforts. Simply comparing model 
performance metrics, such as the area under the curve of receiver operating characteristics and true skill statistics, is insufficient for 
gaining deeper insights into the nuances of risk map performance. The risk maps (Figs. 6 and 7) illustrate these differences, which were 
further validated using landscape indices. In conservation practice, such substantial variations between human–wildlife conflict risk 
maps—where, for instance, the commonly used Maxent algorithm appears to overpredict human–elephant conflict risks, while BRT 
model fails to account for high-risk areas—can have profound implications. These findings raise questions about the reliability of 
earlier human–elephant conflict studies that relied solely on single algorithms without conducting meaningful comparative analyses. 
Our study demonstrates that ensemble-based risk mapping provides consistency and balance as well as harmonised risk maps that 
avoid over- or under-predicting risk classes. This finding is in line with earlier studies that have made comparative analyses of species 
distribution modelling using single algorithms and Ensemble technique see e.g. (Kitratporn and Takeuchi, 2020; Xu, Jiang, and Liu, 
2024). Furthermore, the analysis of human–elephant conflict risk classes, as conducted in this research, represents an innovative 
contribution to the field, filling a critical gap in conservation studies and providing a robust framework for more accurate and 
actionable conservation planning. Interpretation of landscape structure analysis metrics in the context of conflict risk maps offers 
valuable insights into the spatial organisation of the landscape and its implications for managing conflict risk. Table 8 summarises the 
human–elephant conflict-specific implications derived from the FRAGSTATS landscape structure analysis metrics.

4.2. The key predictor variables of human–elephant conflicts in the Taita Taveta County

Distance to house and distance to crops were the most influential predictor variables for all human–elephant conflict models 
(Tables 3 and 4). This highlights their consistent role in predicting the conflicts and agrees with prior research that conflict risk in
creases closer to settlements and agricultural areas (Sitati et al., 2003; Li et al., 2023; Köpke et al., 2024; Rani et al., 2024). Even though 
our analysis did not include human population density, it is logical to assume that the number of humans per area unit is higher where 

Table 8 
Summary of human–elephant conflict -specific implications for landscape structure analysis metrics.

Metric Full Name HEC-Specific Implication Notable Observations from Data

CA Class Area (ha) Indicates the total spatial extent of each risk class; larger areas 
suggest broader zones of potential conflict.

Low-risk areas dominate across all models; high- 
and very high-risk zones are spatially limited, often 
< 1 % of landscape.

PLAND Percentage of 
Landscape

Proportion of the landscape under each risk class; helps prioritize 
spatial extent of management.

Ensemble and SVM showed balanced PLAND 
distributions; BRT produced very small high-risk 
coverage.

NP Number of Patches Reflects landscape fragmentation; high NP suggests scattered 
conflict hotspots and higher monitoring challenges.

MAXENT and RF produced high NP for average to 
high-risk classes—more fragmented conflict areas.

LSI Landscape Shape 
Index

Indicates patch shape complexity; higher values suggest irregular 
patch shapes, possibly aligning with habitat edge effects or human 
land-use boundaries.

BRT and MAXENT showed complex LSI in risk areas; 
GAM and SVM had more regular, compact shapes.

AREA_MN Mean Patch Area (ha) Larger mean patch areas imply more cohesive zones; small values 
suggest highly fragmented risk areas.

SVM generated large, cohesive low-risk patches; 
BRT produced small, fragmented high-risk zones.

ENN_MN Euclidean Nearest 
Neighbour (m)

Measures isolation of patches; higher values imply sparse and 
potentially more isolated risk hotspots.

High-risk zones often had elevated ENN_MN, 
especially in SVM and GLM outputs.

PLADJ Percentage of Like 
Adjacency

Higher values suggest contiguous, homogeneous risk 
zones—important for corridor identification or buffer zoning.

Low-risk zones had high PLADJ across models; high- 
risk zones varied considerably, often lower.

IJI Interspersion and 
Juxtaposition Index

Measures how evenly risk patches are interspersed; important for 
predicting movement patterns or spill-over risk.

SVM and MAXENT showed higher IJI in average to 
high-risk zones, suggesting wide dispersal of 
conflict areas.

AI Aggregation Index Indicates how clumped or dispersed patches are; higher values 
suggest stronger clustering and possibly localized conflict risk.

Low-risk zones showed consistently high AI 
(>98 %); high-risk zones less aggregated, especially 
in MAXENT and RF.
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the total number of houses is the highest. Thus, our result contrasts with Hoare (1999) who found no associations between the 
human–elephant conflict incidents and human population density, and with Pozo et al. (2017) who showed that conflict is not 
significantly driven by the absolute number of humans and elephants but is more likely determined by the use of space and competition 
for resources between them. In the same predictor importance rankings, distance to protected areas ranked third among the 
human–elephant conflict predictors, with conflict probability peaking at a distance of 3–7 km from their boundaries. This finding 
diverges slightly from previous studies, which often report the highest conflict risks occurring closer to protected areas (e.g., Gubbi, 
2012; Guerbois et al., 2012; Naha et al., 2019; Shaffer et al., 2019; König et al., 2020; Tiller et al., 2021; Sanare et al., 2022). The 
models’ prediction of elevated conflict probability near protected areas is a realistic assessment, as most elephants in the study area 
predominantly reside within the national parks (Ngene et al., 2013). Land-use change and connectivity of protected areas are emerging 
to become major threats affecting elephant movement and contributing to the rise in conflicts. Anthropogenic changes around pro
tected areas can display different patterns as diverse as landscapes are, which may explain the contradicting results. Hence, when the 
findings are interpreted for management applications, caution should be taken to ensure these reflect the unique dynamics in the 
landscape of interest. Distance to waterholes ranked fourth, reflecting elephants’ reliance on water sources, particularly during dry 
seasons (Wato et al., 2018; Mlambo et al., 2024). The distance to rivers was only the fifth most important variable and this diverges 
slightly with findings from previous human–elephant conflict studies (Fritz, 2017; Naha et al., 2019; Montero-Botey et al., 2024), 
where distance to rivers was a significant predictor. The result also contrasts with Sanare et al. (2022) who found no significant as
sociation between these conflicts and water body distribution in northern Tanzania. This anomaly could be attributed to the pre
dominantly ephemeral nature of rivers in Taita Taveta County, which flow only briefly after rainfall events and remain dry for most of 
the year. As a result, rivers do not provide a consistent water source for elephants, which are highly water-dependent (Wato et al., 
2018) and congregate wherever there is water, especially during scarcity in the dry season. To address this water scarcity, water 
supplementation through the creation of water pans and drilling of boreholes is common. These waterholes ensure sustained avail
ability for wildlife, often lasting three to four months after rainfall events. Borehole-fed waterholes, equipped with solar pumps, ensure 
a continuous water supply. Such interventions help distribute wildlife more evenly across the landscape and mitigate habitat 
degradation caused by overconcentration near natural water sources. The response to the Enhanced Vegetation Index in our study was 
positive, with conflict risk increasing alongside higher vegetation index values. This result aligns with previous studies (Sanare et al., 
2022; Shameer et al., 2024; Xu, Jiang and Liu, 2024), which associate elevated vegetation indices like Enhanced Vegetation Index and 
Normalized Difference Vegetation Index with crops at their peak growth stages, attracting elephants. Elephants choose food sources 
with the highest rates of nutrient intake (Osborn, 2004) and, therefore, favour greener vegetation with higher water content. This 
illustrates the importance of vegetation indices in the models. However, the overall performance of the Enhanced Vegetation Index as a 
predictor in our models was relatively poor. This may be attributable to its calculation as a 2014–2015 average, which could mask 
seasonal variations. Earlier research indicates that the predictive utility of vegetation indices in species distribution modelling im
proves when indices are split into dry and wet seasons (Mlambo et al., 2024). Additionally, in the Taita Taveta County landscape, the 
prevalence of irrigated croplands could influence the relationship between vegetation indices and human–elephant conflicts. Ele
phants are known to move to areas with abundant vegetation during different seasons (Bohrer et al., 2014), making seasonally sen
sitive vegetation indices potentially more effective for modeling conflict risk in such contexts. Similarly, crop raiding by elephants may 
have been influenced by the variety of crops grown, since most farmers grow more than one crop on their farms. Elephants forage 
selectively on palatable crops (Rohini et al., 2016), and show high preference for maize (Matsika et al., 2023), the dominant crop in the 
study area. Despite the dry conditions, the impact of crop raiding by elephants on households is of overriding importance in Taita 
Taveta County (Von Hagen et al., 2023).

The different agro-ecological zones of Taita Taveta County likely impact the distribution of human–elephant conflicts there. Taveta 
sub-county, located west of the Tsavo West National Park (Fig. 1), is more humid and has more intensive year-round agriculture, such 
as irrigated crop farming. Hence, when other areas of the county experience dry seasons with no crops, farms in Taveta produce crops 
at different stages of growth. More intensive agriculture attracts crop raiding by elephants (Tiller et al., 2021), which places Taveta at a 
disadvantage in comparison to the other areas in the county.

The climate predictors, namely annual mean temperature and mean precipitation 2014–2015, performed poorly in the predictor 
importance rankings, contrasting with earlier research where these variables ranked among the top predictors (Shameer et al., 2024). 
A likely explanation for this underperformance is the absence of seasonality in the climate data used for this analysis. Previous studies, 
such as Naha et al. (2019), emphasize the critical role of seasonal variations, particularly dry and wet seasons, in influencing 
human–elephant conflict dynamics. Naha et al. specifically identified annual mean precipitation as a key spatial predictor of conflict. 
These findings suggest that incorporating seasonal fluctuations into climate data could enhance the predictive accuracy of human
–elephant conflict models, particularly for climate-related variables. The mean response curves of the predictor variables suggest that 
conflict incidents are more likely to occur in areas with lower annual precipitation, higher annual temperatures, and flat terrain (no 
slope) in Taita Taveta County. This finding is consistent with the idea that conflict events tend to occur in lowland savanna regions, 
which is a logical expectation as elephant habitats are currently restricted only to these semi-arid lowland plain areas. The distance to 
road was the least influential predictor in this study. This low ranking contrasts with earlier studies where proximity to roads was 
identified as a significant predictor of conflict (Chen et al., 2016; Lala et al., 2021). The relatively lower importance of this variable in 
our study may reflect the specific spatial dynamics of the study area, where roads are less associated with human–elephant interactions 
compared to other landscape features.
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4.3. Limitations and future research directions

While we are confident that this study addresses an important research gap and provides a comprehensive comparative analysis of 
species distribution modelling algorithm performance and risk map comparisons using novel approaches, we acknowledge several 
limitations in the human–elephant conflict modeling presented. The modeling of potential conflict distribution through species dis
tribution models relies heavily on the availability and quality of presence and environmental data. In this study, the human–elephant 
conflict incidence data were derived exclusively from Kenya Wildlife Service claim forms, which may not comprehensively capture the 
full spectrum of incidents. Moreover, a significant limitation was the absence of precise geographical coordinates in many of the claim 
forms, rendering them unusable for spatial analysis. Imperfect detection and reporting of human–elephant conflict incidents in the 
study area, may result in biased and incorrect conclusions of the spatiotemporal drivers of the phenomenon (Goswami et al., 2015). 
Future studies would benefit from a more comprehensive dataset that includes a broader scope of conflict incidences, potentially 
improving the model’s accuracy and generalizability for regional assessments. Some key variables were excluded from this study due 
to data unavailability, but they may have important implications for conflict modeling in future research. These include: (i) crop types, 
which could influence the likelihood of elephant crop raiding as elephants show high preference for maize (Matsika et al., 2023; 
Montero-Botey et al., 2024); (ii) canopy cover, which provides shaded areas known to attract elephants (McKnight, 2015); (iii) fences, 
which restrict elephant movements between areas (Amara et al., 2020); (iv) cattle distribution, as elephants tend to avoid areas with 
high cattle populations (Ngene et al., 2017); (v) traditional migratory routes and paths of elephants that are important components in 
the distribution of human–elephant conflicts (Naughton et al., 1999); and (vi) seasonal variations such as wet and dry seasons that 
affect elephant movements and the frequency of conflict (Mlambo et al., 2024). These factors should be carefully considered in future 
studies to improve the robustness and predictive power of human–elephant conflict models.

5. Conclusions

The six modelling approaches offer a comprehensive perspective on human–elephant conflict risk, with each algorithm capturing 
different spatial patterns and contributing unique insights. While single models may emphasize specific risk areas, the ensemble model 
synthesizes their strengths, reducing potential biases and providing a more reliable and balanced prediction. This comparative 
approach supports decision-making by first identifying high-risk zones, allowing conservation managers to implement targeted 
strategies such as deterrents, habitat modifications, and land-use planning. Secondly, it facilitates efficient resource allocation by 
ensuring that conservation funds are prioritized in areas where conflict risk is highest and where multiple models show agreement. 
Thirdly, these maps promote community-driven solutions by providing local stakeholders with accessible, data-driven insights for 
developing mitigation measures. Fourthly, given the importance of Open Access publishing, researchers should prioritize making their 
findings widely available so that local authorities, conservationists, and community groups can readily access and apply them. Lastly, 
assessing model consensus strengthens confidence in intervention strategies, as consistently predicted high-risk areas indicate urgent 
priorities for mitigation. From a scientific standpoint, this study underscores the limitations of relying on a single model, such as 
Maximum Entropy, which may over- or underpredict conflict risk. By demonstrating the advantages of an ensemble approach, our 
findings contribute to improving predictive accuracy and guiding evidence-based management strategies for mitigating human
–elephant conflict.

Human–wildlife conflict represents a significant challenge for conservation efforts and local livelihoods across many regions, 
including Taita Taveta County, Kenya. The negative impact of human–elephant conflict incidents on both wildlife conservation and 
human communities underscores the urgency of developing effective mitigation strategies. This study used species distribution models 
and ensemble modelling to examine the relationship between human–elephant conflict incidents and ten environmental predictors, 
subsequently generating and evaluating both probability and risk maps. In addition, landscape indices were calculated to assess the 
spatial structure of conflict risk, and a novel method for combining risk metrics was introduced to enhance the evaluation of risk map 
performance. Our findings provide a critical contribution to the conservation ecology literature by offering a novel framework for 
human–elephant conflict modelling. To summarise our findings: (i), the results show significant variation among individual species 
distribution model algorithms, underscoring the limitations of single-model approaches in predicting conflict risk; (ii) the ensemble 
model provided consistent and balanced results, offering a harmonised human–elephant conflict prediction, which highlights the 
importance of ensemble methodologies in addressing complex conservation challenges; (iii) distance to houses and distance to crops 
were identified as the most influential predictors of conflict; (iv) landscape indices contributed to improved interpretation of risk maps. 
This study not only advances our understanding of the spatial dynamics of human–elephant conflict but also provides a valuable tool 
for conservation practitioners seeking to mitigate conflict and protect both human livelihoods and wildlife populations. Policy makers 
can adopt our findings to identify priority areas for human–elephant conflict mitigation. This is sorely needed, because human
–elephant conflict is highlighted among the top threats facing elephant conservation within its range (Kenya Wildlife Service, 2008; 
Shaffer et al., 2019). In addition, complementing the scientific methods proposed here with local ecological knowledge at a relevant 
scale can contribute to better understanding and prediction of landscape use by elephants (Buchholtz et al., 2020). Integrating the 
prediction models on human–elephant conflicts with the indigenous knowledge of Taita communities on the nondestructive practices 
of conflict management (Mwamidi et al., 2012) could aid in developing prevention and mitigation strategies that are more inclusive, 
locally appropriate, and spatially targeted to the predicted high-risk human–elephant conflict areas.
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